\(\dfrac{x+35}{65}+\dfrac{x+39}{61}=\dfrac{x+43}{57}+\dfrac{x+47}{53}\)
\(\Leftrightarrow\dfrac{x+35}{65}+1+\dfrac{x+39}{61}+1=\dfrac{x+43}{57}+1+\dfrac{x+47}{53}+1\)
\(\Leftrightarrow\dfrac{x+100}{65}+\dfrac{x+100}{61}-\dfrac{x+100}{57}-\dfrac{x+100}{53}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{65}+\dfrac{1}{61}-\dfrac{1}{57}-\dfrac{1}{53}\ne0\right)=0\Leftrightarrow x=-100\)
Ta có:
\(\dfrac{x+35}{65}+\dfrac{x+39}{61}=\dfrac{x+43}{57}+\dfrac{x+47}{53}\\ \Rightarrow\left(\dfrac{x+35}{65}+1\right)+\left(\dfrac{x+39}{61}+1\right)=\left(\dfrac{x+43}{57}+1\right)+\left(\dfrac{x+47}{53}+1\right)\\ \Rightarrow\dfrac{x+100}{53}+\dfrac{x+100}{61}=\dfrac{x+100}{57}+\dfrac{x+100}{53}\\ \Rightarrow\left(x+100\right)\left(\dfrac{1}{65}+\dfrac{1}{61}-\dfrac{1}{57}-\dfrac{1}{53}\right)=0\)
Ta thấy:
\(\dfrac{1}{65}< \dfrac{1}{57}\\ \dfrac{1}{61}< \dfrac{1}{53}\\ \Rightarrow\left(\dfrac{1}{65}+\dfrac{1}{62}\right)-\left(\dfrac{1}{57}+\dfrac{1}{53}\right)< 0\)
Hay \(\dfrac{1}{65}+\dfrac{1}{62}-\dfrac{1}{57}-\dfrac{1}{53}\ne0\)
\(\Rightarrow x+100=0\\ \Rightarrow x=0-100\\ \Rightarrow x=-100\)
Vậy \(x=-100\)
Ta có: \(\dfrac{x+35}{65}+\dfrac{x+39}{61}=\dfrac{x+43}{57}+\dfrac{x+47}{53}\)
\(\Leftrightarrow\dfrac{x+100}{65}+\dfrac{x+100}{61}-\dfrac{x+100}{57}-\dfrac{x+100}{53}=0\)
\(\Leftrightarrow x+100=0\)
hay x=-100