\(2x^2-2x=\left(x-1\right)^2\)
\(\Rightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)\left(2x-x+1\right)=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(2x^2-2x=\left(x-1\right)^2\)
\(2x\left(x-1\right)=\left(x-1\right)^2\)
\(2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\left(x-1\right)\left(2x-x+1\right)=0\)
\(\left(x-1\right)\left(x+1\right)=0\)
⇔\(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)