a) \(\left(x-2018\right)^{2014}=1\)
\(\Rightarrow\left(x-2018\right)^{2014}=1^{2014}\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=1\\x-2018=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1+2018\\x=-1+2018\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=2017\end{matrix}\right.\)
b) \(\left(\dfrac{1}{3}x\right):\dfrac{2}{3}=\dfrac{7}{4}:\dfrac{2}{5}\)
\(\Rightarrow\left(\dfrac{1}{3}x\right):\dfrac{2}{3}=\dfrac{7}{4}.\dfrac{2}{5}\)
\(\Rightarrow\left(\dfrac{1}{3}x\right):\dfrac{2}{3}=\dfrac{7}{10}\)
\(\Rightarrow\dfrac{1}{3}x=\dfrac{7}{10}.\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{3}x=\dfrac{7}{15}\)
\(\Rightarrow x=\dfrac{7}{15}:\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{7}{15}.3\)
\(\Rightarrow x=\dfrac{7}{5}\)
a) \(\left(x-2018\right)^{2014}=1\Leftrightarrow\)\(\left[{}\begin{matrix}x-2018=\sqrt[2014]{1}\\x-2018=-\sqrt[2014]{1}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2018=1\\x-2018=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2019\\x=2017\end{matrix}\right.\)
Vậy S={2017;2019}
b) \(\left(\dfrac{1}{3}x\right):\dfrac{2}{3}=\dfrac{7}{4}:\dfrac{2}{5}\Leftrightarrow\left(\dfrac{1}{3}x\right):\dfrac{2}{3}=\dfrac{7}{4}.\dfrac{5}{2}\Leftrightarrow\left(\dfrac{1}{3}x\right):\dfrac{2}{3}=\dfrac{35}{8}\Leftrightarrow\dfrac{1}{3}x=\dfrac{35}{8}.\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=\dfrac{35}{12}\Leftrightarrow x=\dfrac{35}{12}:\dfrac{1}{3}\Leftrightarrow x=\dfrac{35}{4}\)
Vậy S={\(\dfrac{35}{4}\)}