`3x(x-1)-x+1=0`
`<=> 3x(x-1) -(x-1)=0`
`<=>(x-1)(3x-1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\3x=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{1;\dfrac{1}{3}\right\}\)
3x(x - 1) - x + 1 = 0
3x(x - 1) - (x - 1) = 0
(x - 1)(3x - 1) = 0
x - 1 = 0 hoặc 3x - 1 = 0
*) x - 1 = 0
x = 1
*) 3x - 1 = 0
3x = 1
x = 1/3
Vậy x = 1/3; x = 1
\(3x\left(x-1\right)-x+1=0\)
\(\Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{3};1\right\}\).