Tìm tập nghiệm của bất phương trình log 2 5 ( x - 4 ) + 1 > 0 .
A. [ 13 2 ; + ∞ )
B. - ∞ ; 13 2
C. 4 ; + ∞
D. 4 ; 13 2
Tìm tập nghiệm Scủa bất phương trình ( 2 + 1 ) x ≤ ( 2 - 1 ) x
A. S = ( - ∞ ; - 3 ]
B. S = ( - ∞ ; - 3 )
C. [ 3 ; + ∞ )
D. ( 3 ; + ∞ ]
Tập nghiệm của bất phương trình log 2 ( x + 1 ) - 2 log 4 ( 5 - x ) < 1 - log 2 ( x - 2 ) là
A. (3;5)
B. (2;3)
C. (2;5)
D. (-4;3)
Tìm tập nghiệm S của bất phương trình l o g 1 2 ( x + 2 ) - l o g 1 2 x > l o g 2 ( x 2 - x ) - 1
A. S = 2 ; + ∞
B. S = 1 ; 2
C. S = 0 ; 2
D. S = ( 1 ; 2 ]
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + 1 + x x 2 + 3 + 1 > 0 là
A. 1 ; 2
B. - 1 ; 2
C. − 1 , + ∞ .
D. 1 , + ∞ .
Cho hàm số f(x)=-1/3x3 + 4x2-7x+2. Tập nghiệm của bất phương trình: f ' ( x ) ≥ 0 là
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là
A. 1 ; 2
B. - 1 ; 2
C. - 1 ; + ∞
D. 1 ; + ∞
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là:
A. (1;2)
B. (-1;2)
C. − 1 ; + ∞ .
D. 1 ; + ∞ .
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x . Biết rằng x = 1 là một nghiệm của bất phương trình
A. S = − 2 ; 0 ∪ 1 3 ; 3
B. S = − 1 ; 0 ∪ 1 3 ; 2
C. S = − 1 ; 0 ∪ 1 3 ; 3
D. S = − 1 ; 0 ∪ 1 ; 3