Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minz Ank

Tìm số hữu tỉ x để biểu thức P = \(\dfrac{x^2-4x}{x^2+2}\) có giá trị là một số nguyên dương.

Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 22:54

Để P là số nguyên dương thì x^2-4x>=0 và x^2-4x chia hết cho x^2+2

=>x^2+2-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>4x+2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>16x^2-4 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>16x^2+32-36 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>\(x^2+2\in\left\{2;3;4;6;9;12;18;36\right\}\)  và (x>=4 hoặc x<=0)

=>\(x\in\left\{0;4;\sqrt{34};-\sqrt{34};-1;-\sqrt{2};-2;-\sqrt{7};-\sqrt{10};-4\right\}\)

Nguyễn Việt Lâm
26 tháng 3 2023 lúc 9:12

Khi đề yêu cầu P nguyên mà ko có điều kiện x nguyên thì phương pháp tốt nhất luôn là tìm miền giá trị của P từ đó lọc ra những số nguyên rồi tìm ngược lại x

\(P=\dfrac{x^2-4x}{x^2+2}=\dfrac{-\left(x^2+2\right)+2x^2-4x+2}{x^2+2}=-1+\dfrac{2\left(x-1\right)^2}{x^2+2}\ge-1\)

\(P=\dfrac{2\left(x^2+2\right)-x^2-4x-4}{x^2+2}=2-\dfrac{\left(x+2\right)^2}{x^2+2}\le2\)

\(\Rightarrow-1\le P\le2\)

Mà \(P\) nguyên dương \(\Rightarrow P=\left\{1;2\right\}\)

-  Với \(P=1\Rightarrow\dfrac{x^2-4x}{x^2+2}=1\Rightarrow-4x=2\Rightarrow x=-\dfrac{1}{2}\)

- Với \(P=2\Rightarrow\dfrac{x^2-4x}{x^2+2}=2\Rightarrow x^2+4x+4=0\Rightarrow x=-2\)

Vậy \(x=\left\{-2;-\dfrac{1}{2}\right\}\)


Các câu hỏi tương tự
Dorakudosongolufpika
Xem chi tiết
Tuyết Ly
Xem chi tiết
Mai Nhật Huy
Xem chi tiết
Nguyễn Hương Quỳnh 02
Xem chi tiết
Huyền Lê
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Tuyết Ly
Xem chi tiết
nguyễn anh tuấn
Xem chi tiết