Tính: \(\int\dfrac{ln\left(sinx+cosx\right)}{cos^2x}dx\)
Mấy bạn làm giúp mình câu nguyên hàm này với:
\(\int\dfrac{1}{sinx.sin\left(x+\dfrac{\pi}{6}\right)}dx\)
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
Tìm nguyên hàm sau:
\(\int\dfrac{x^4}{\left(x^4-1\right)^3}\) và \(\int\dfrac{x^8}{\left(x^4-1\right)^3}\)
tính nguyên hàm
I=\(\int\left(x.\log_3x\right)dx\)
Tính: \(I=\int\dfrac{dx}{\sqrt{\left(x+1\right)\left(x+2\right)}}\)
\(\int\dfrac{1}{x\left(\ln x+1\right)^2}dx\)
Biết\(I=\int\limits^5_2\dfrac{\left|x-2\right|}{x}dx=aln2+bln5+c\) với \(a,b,c\in Z\).Tìm \(a,b,c\)
Xét tích phân I=\(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{sin2x}{\sqrt{1+cosx}}dx\). Nếu đặt t=\(\sqrt{1+cosx}\), khẳng định nào dưới đây là đúng?
A. I= \(\int\limits^1_{\sqrt{2}}\dfrac{4t^3-4t}{t}dt\)
B. I= \(\int\limits^1_{\sqrt{2}}\dfrac{-4t^3+4t}{t}dt\)
C. I= \(4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)
D. I= \(-4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)