M = ( x2+y2+2xy) - 2(x+y) +1 +(x2 -4x +4) +2012
=(x+y-1)2 +(x-2)2+ 2012 > = 2012
==> min M = 2012 <=> x = 2 ; y =-1
M = ( x2+y2+2xy) - 2(x+y) +1 +(x2 -4x +4) +2012
=(x+y-1)2 +(x-2)2+ 2012 > = 2012
==> min M = 2012 <=> x = 2 ; y =-1
Tìm Min A=\(x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2008\)
Với x,y là các số thực, ta có : x2 + 6( x + y ) + 2xy + 2y2 + 6 = 0
Tìm Min, Max S= x + y
BT1: Tìm giá trị lớn nhất của bt
a, 15 - 10x - 4x + 24xy - 16y2
b, 2x2 - 2xy + y2 - 2x +2y + 2
c, Giá trị nhỏ nhất
A= \( {2 \over 2x-5-9x^2}\)
d, GTLN
A=\({3x^2-8x+6 \over x^2-2x+1}\)
BT2
A= \( {3x^2+4x \over x^2+1}\)
B= \({2 \over x^2-6x+17}\)
a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
tìm cặp số ( x ; y ) thỏa mãn pt : x2 + y2 + 6x - 3y - 2xy + 7 =0 sao cho y đạt giá trị lớn nhất.
Rút gon
A = \(\left(\sqrt{6x^2-12xy^2+6y^3}+\sqrt{24x^2y}\right):\sqrt{6y}\)
B = \(\frac{\sqrt{343xy^3\left(x-y\right)^2}}{\sqrt{28xy}}\) với x, y>0 , x<y
C= \(\sqrt{\frac{m}{1-2x+x^2}}:\frac{\sqrt{81}}{4m^3\left(x^2-2x+1\right)}\) với m>0 , m khác 1
Cho x,y,z là các số nguyên dương .
Thỏa mãn \(12x^2+11y^2+3z^2+16x+8y+7=4xy+8xz+36yz+24z\)
Tìm Min A=x-2y+3z
tìm nghiệm nguyên của PT:\(x^2y^2-x^2-6y^2=2xy\)
cho m=x^2+y^2+2z^2+t^2. Tìm min M với x,y,z,t nguyên và x^2 -y^2 +t^2=21; x^2 +3y^2+4z^2=101