Để hệ phương trình có vô số nghiệm thì \(\dfrac{1}{m}=\dfrac{-m}{-4}=\dfrac{2}{m-2}\)
=>m^2=4 và m^2-2m=8
=>m=-2
Để hệ phương trình có vô số nghiệm thì \(\dfrac{1}{m}=\dfrac{-m}{-4}=\dfrac{2}{m-2}\)
=>m^2=4 và m^2-2m=8
=>m=-2
\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
tìm m để hệ pt có nghiệm x + y =2
cho hệ pt \(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
tìm m để hệ có nghiệm (-1;3)
\(\left\{{}\begin{matrix}mx+4y=20\\x+my=10\end{matrix}\right.\)
tìm m để hệ có nghiệm (x;y) sao cho \(-y^2+3x+5\) đạt min.
\(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
giải hệ khi `m=3`. Tìm m để hệ có nghiệm x>1,y>0
\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất thỏa mãn `x=3y`
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
giải, biện luận hệ theo tham số m
a) \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)
tìm m để HPT có nghiệm duy nhất (x,y) sao cho x+y>-5
\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
tìm m để hệ có nghiệm (x;y) thỏa mãn `x+y=1 - (m^2)/(m^2 +3)`
\(\left\{{}\begin{matrix}4x+my=2\\mx+y=1\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất thỏa mãn x+y<2