a:
\(0< =\left|cos3x\right|< =1\)
=>\(0< =2\left|cos3x\right|< =2\)
Để hàm số xác định trên R thì \(2\left|cos3x\right|-m< >0\) với mọi x
=>\(m< >2\left|cos3x\right|\) với mọi x
=>\(m\in R\backslash\left[0;2\right]\)
b: \(cosx\cdot cos3x=\dfrac{1}{2}\cdot\left[cos\left(x+3x\right)+cos\left(x-3x\right)\right]\)
\(=\dfrac{1}{2}\left[cos4x+cos2x\right]\)
\(=\dfrac{1}{2}\left[2\cdot cos^22x-1+cos2x\right]\)
\(=cos^22x+\dfrac{1}{2}\cdot cos2x-\dfrac{1}{2}\)
\(=cos^22x+2\cdot cos2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\)
\(=\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}\)
\(-\dfrac{3}{4}< =cos2x+\dfrac{1}{4}< =\dfrac{5}{4}\)
=>\(0< =\left(cos2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)
=>\(-\dfrac{9}{16}< =\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}< =1\)
Để hàm số xác định trên R thì \(m< >cosx\cdot cos3x\)
=>\(m\in R\backslash\left[-\dfrac{9}{16};1\right]\)