Phương trình hoành độ giao điểm là:
\(3x^2-2x-1=\dfrac{1}{2}x+3m+2\)
=>\(3x^2-2x-1-\dfrac{1}{2}x-3m-2=0\)
=>\(3x^2-\dfrac{5}{2}x-3m-3=0\)
=>\(6x^2-5x-6m-6=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot6\cdot\left(-6m-6\right)\)
\(=25+24\left(6m+6\right)=25+144m+144\)
=144m+169
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>144m+169>0
=>144m>-169
=>\(m>-\dfrac{169}{144}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{5}{6}\\x_1x_2=\dfrac{c}{a}=\dfrac{-6m-6}{6}=-m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=3\cdot\left(x_1+x_2\right)\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)
=>\(\left(\dfrac{5}{6}\right)^2-2\left(-m-1\right)=3\cdot\dfrac{5}{6}\)
=>\(\dfrac{25}{36}+2m+2=\dfrac{5}{2}\)
=>\(2m=\dfrac{5}{2}-2-\dfrac{25}{36}=\dfrac{1}{2}-\dfrac{25}{36}=\dfrac{18}{36}-\dfrac{25}{36}=-\dfrac{7}{36}\)
=>m=-7/72(nhận)


