\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+2}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{2}{x}}+3}{\sqrt{4+\dfrac{1}{x^2}}-1+\dfrac{2}{x}}=\dfrac{1+3}{2-1}=\dfrac{4}{1}=4\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+2}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{2}{x}}+3}{\sqrt{4+\dfrac{1}{x^2}}-1+\dfrac{2}{x}}=\dfrac{1+3}{2-1}=\dfrac{4}{1}=4\)
xác định đường tiệm cận đứng của đồ thị hàm số sau
a) \(y=\dfrac{\sqrt{x-2}+1}{x^2-3x+2}\)
b) \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)
c) \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)
d) \(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)
tính đạo hàm của các hàm số sau
a) \(y=x^2+3x-6x^6+\dfrac{2x-3}{x-1}\)
b) \(y=3x^2-4x+\sqrt{2x^2-3x+1}\)
c) \(y=\sqrt{4x^2-3x+1}-4\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+10}-4}{3x-9}\)
b) \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{4x+8}-6}{x^2-9x+14}\)
c) \(\lim\limits_{x\rightarrow5}\dfrac{x^2-8x+15}{2x^2-9x-5}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}.\sqrt[3]{1+3x}-\sqrt{1+4x}}{1+x-\sqrt{1+2x}}=?\)
tìm khoảng đồng biến nghịch biến
a) \(y=\dfrac{x^2+3x+2}{3x+2}\)
b) \(y=\sqrt{3x+6x^2}\)
c) \(y=\sqrt{16-x^2}\)
d) \(y=\dfrac{x^2-2x+2}{x^2+3}\)
Tính lim \(\left(x\rightarrow\pm\right)\)\(\dfrac{\sqrt{x^2+2x+3}+4x+1}{\sqrt{4x^2+1}+2-x}\)
a) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+2}+\sqrt{5x+4}-5}{x-1}_{ }\)
b) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+4}+\sqrt{90-6x}-5}{x^2}\)
tìm khoảng đồng biến nghịch biến
a) \(y=\sqrt{4x-x^2}\)
b) \(y=\sqrt{16-x^2}\)
c) \(y=\dfrac{x^2-2x+2}{x^2+3}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)
c) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)