\(=lim\left[n^2\left(\sqrt{1+\dfrac{1}{n^2}}-\sqrt{1+\dfrac{2}{n^2}}\right)\right]\)
\(=+\infty\)
\(=lim\left[n^2\left(\sqrt{1+\dfrac{1}{n^2}}-\sqrt{1+\dfrac{2}{n^2}}\right)\right]\)
\(=+\infty\)
1) Tính \(I=\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2}-\sqrt{n^2-1}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2n+2}+n\right)\)
1) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+6n}-n\right)\)
2) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n+1}-\sqrt{n-1}\right)\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+3n^2+1}-n\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-\sqrt[3]{8n^3+n}\right)\)
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=\sqrt{3}+\sqrt{2}\\u_{n+1}=\left(\sqrt{3}-\sqrt{2}\right)u^2_n+\left(2\sqrt{6}-5\right)u_{n_{ }}+3\sqrt{3}-3\sqrt{2}\end{matrix}\right.\)
tìm lim(\(\Sigma^1_{i=1}\dfrac{1}{u_i+\sqrt{2}}\))
7/ lim \(\sqrt{n^2+4n+1}-n\)
8/ lim \(n-\sqrt{n^2+9n-1}\) (pp liên hợp lim \(\dfrac{n^2-\left(n^2+9n-1\right)}{n+\sqrt{n^2+9n-1}}\)
9/ lim \(\dfrac{1+2+3+...+n}{n^2-1}\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
\(\left(x_n\right)\left\{{}\begin{matrix}x_1=2\\x_{n+1}=\dfrac{x_n+2+\sqrt{x_n^2+8x_n-4}}{2},n\in N,n>0\end{matrix}\right.\)
Đặt \(y_n=\sum\limits^n_{k=1}\dfrac{1}{x_n^2-4}\). Tìm lim yn
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2},n\ge1\end{matrix}\right.\). Tính \(\lim\limits_{u_n}\)