Có biểu tượng $\sum$ hỗ trợ viết công thức toán. Lần sau bạn lưu ý sử dụng, không viết công thức kiểu như trên bài.
Lời giải:
$x^2+y^2-4x+6y+15=(x^2-4x+4)+(y^2+6y+9)+2$
$=(x-2)^2+(y+3)^2+2$
$\geq 0+0+2=2$
Vậy gtnn của biểu thức là $2$. Giá trị này đạt tại $x-2=y+3=0$
$\Leftrightarrow x=2; y=-3$
Ta có: \(x^2+y^2-4x+6y+15\)
\(=x^2-4x+4+y^2+6y+9+2\)
\(=\left(x-2\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-3