Lời giải:
ĐKXĐ: $x>0$
Áp dụng BĐT Cô-si: $x+9\geq 2\sqrt{9x}=6\sqrt{x}$
$\Rightarrow A=\frac{x+9}{6\sqrt{x}}=\frac{6\sqrt{x}}{6\sqrt{x}}=1$
Vậy $A_{\min}=1$ khi $x=9$
Lời giải:
ĐKXĐ: $x>0$
Áp dụng BĐT Cô-si: $x+9\geq 2\sqrt{9x}=6\sqrt{x}$
$\Rightarrow A=\frac{x+9}{6\sqrt{x}}=\frac{6\sqrt{x}}{6\sqrt{x}}=1$
Vậy $A_{\min}=1$ khi $x=9$
Tìm GTLN của biểu thức
a) \(A=\dfrac{1}{x-\sqrt{x}+2}\)
b) \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Tìm GTNN của biểu thức M= \(\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
Rút gọn các biểu thức
a)\(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\)
b)\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
Help me !!!
Cho 2 số dương x,y thỏa mãn x+y≥5
Tìm GTNN của biểu thức
A= \(18x+\dfrac{56}{3}y+\dfrac{4}{x}+\dfrac{15}{y}\)
Cho biểu thức
A= \(\dfrac{2}{\sqrt{x}+4}-\dfrac{3}{\sqrt{x}-4}-\dfrac{2\sqrt{x}+16}{16-x}\:\:\:\left(x\ge0,x\ne16\right)\)
a) Rút gọn
b) Tìm giá trị A khi x = \(4-2\sqrt{3}\)
Tìm GTNN của
\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Mn giúp em với
cho A= \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
1, rút gọn A, tìm ĐKXĐ
2, tìm x để A< 1
3 Tìm GTNN khi B= (x-9). A
P= \(\dfrac{x+9}{6\sqrt{x}}\) đk x>0; x khác 4. Tìm GTNN của P
Với x nguyên, tìm GTNN của biểu thức sau:
B = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-5}\) (\(x\ge0\), \(x\ne25\))