=\(\sqrt{x-5-2\sqrt{x-5}+1}+\sqrt{x-5+2\sqrt{x-5}+1}\)
=\(\sqrt{\left(\sqrt{x-5}-1\right)^2}+\sqrt{\left(\sqrt{x-5}+1\right)^2}\)
=\(\left|\sqrt{x-5}-1\right|+\left|\sqrt{x-5}+1\right|\) \(\ge\left|1-\sqrt{x-5}+\sqrt{x-5}+1\right|\) =2
Vậy GTNN của A là 2 khi x=5
A = \(\sqrt{\left(x-5\right)-2\sqrt{x-5}+1}\) + \(\sqrt{\left(x-5\right)+2\sqrt{x-5}+1}\)
A = \(\sqrt{\left(\sqrt{x-5}-1\right)^2}\) + \(\sqrt{\left(\sqrt{x-5}+1\right)^2}\)
A = [ \(\sqrt{x-5}-1\) ] + [\(\sqrt{x-5}+1\) ]
A = [ \(1-\sqrt{x-5}\) ] + [ \(1+\sqrt{x-5}\) ]
Áp dụng BĐT dấu trị tuyệt đối
=> A \(\ge\) [ \(1-\sqrt{x-5}+1+\sqrt{x-5}\) ] = 2
Vậy \(A_{min}\) = 2 <=> x = 5