Có bài ngược của bài này, bạn đăng và đã có lời giải thì chỉ cần đảo lại đáp án là được.
\(E=\sqrt{x}+\dfrac{4}{\sqrt{x}}-2=\dfrac{4\sqrt{x}}{9}+\dfrac{4}{\sqrt{x}}+\dfrac{5}{9}.\sqrt{x}-2\)
\(E\ge2\sqrt{\dfrac{16\sqrt{x}}{9\sqrt{x}}}+\dfrac{5}{9}.\sqrt{9}-2=\dfrac{7}{3}\)
\(E_{min}=\dfrac{7}{3}\) khi \(x=9\)
\(F=3\sqrt{x}+\dfrac{1}{\sqrt{x}}+1=2\sqrt{x}+\dfrac{1}{\sqrt{x}}+\sqrt{x}+1\)
\(F\ge2\sqrt{\dfrac{2\sqrt{x}}{\sqrt{x}}}+1.\sqrt{\dfrac{1}{2}}+1=\dfrac{2+5\sqrt{2}}{2}\)
\(F_{min}=\dfrac{2+5\sqrt{2}}{2}\) khi \(x=\dfrac{1}{2}\)