\(x^2-xy-2022x+2023y-2024=0\\\Leftrightarrow (x^2-2023x)-(xy-2023y)+(x-2023)-1=0\\\Leftrightarrow x(x-2023)-y(x-2023)+(x-2023)=1\\\Leftrightarrow(x-2023)(x-y+1)=1\)
Vì \(x,y\) nguyên nên \(x-2023;x-y+1\) có giá trị nguyên
mà \(\left(x-2023\right)\left(x-y+1\right)=1\)
nên ta có các trường hợp xảy ra là:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2023=1\\x-y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2023=-1\\x-y+1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2024\left(tm\right)\\\left\{{}\begin{matrix}x=2022\\y=2024\end{matrix}\right.\left(tm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2024;2024\right);\left(2022;2024\right)\).
\(\text{#}Toru\)