Với \(a=b\) thì \(\left(a^2+1\right)^2\) và \(c^2\) là 2 số tự nhiên liên tiếp đều chính phương nên \(c=0;a^2+1=1\) (ktm)
Với \(a\ne b\), ko mất tính tổng quát giả sử \(a< b\)
\(\left(a^2+1\right)\left(b^2+1\right)=c^2+1\Leftrightarrow a^2\left(b^2+1\right)=\left(c-b\right)\left(c+b\right)\) (1)
Mà \(b^2+1\) là SNT \(\Rightarrow c-b\) hoặc \(c+b\) chia hết \(b^2+1\)
Do \(a< b\Rightarrow\left(b^2+1\right)^2>c^2+1\Rightarrow b^2>c\) (2)
Nếu \(c-b\) chia hết \(b^2+1\Rightarrow c-b\ge b^2+1\Rightarrow c\ge b^2+b+1>b^2\) mâu thuẫn (2)
\(\Rightarrow c+b\) chia hết \(b^2+1\) \(\Rightarrow c+b=k\left(b^2+1\right)\Rightarrow k\left(b^2+1\right)< b^2+b\)
\(\Rightarrow k< \dfrac{b^2+b}{b^2+1}< 2\Rightarrow k=1\)
\(\Rightarrow c=b^2-b+1\)
Thế vào (1) \(\Rightarrow a^2\left(b^2+1\right)=\left(b-1\right)^2\left(b^2+1\right)\Rightarrow a^2=\left(b-1\right)^2\)
\(\Rightarrow a=b-1\)
\(\Rightarrow\left(b-1\right)^2+1\) và \(b^2+1\) cùng là số nguyên tố
- Với \(b=1\) không thỏa
- Với \(b=2\) thỏa
- Với \(b>2\) do \(b^2+1\) nguyên tố \(\Rightarrow b^2+1\) lẻ \(\Rightarrow b\) chẵn
\(\Rightarrow\left(b-1\right)^2+1\) chẵn \(\Rightarrow\) ko là SNT \(\Rightarrow\) không thỏa
Vậy \(b=2;a=1;c=3\)