`<=> sqrt((x-2)^2) = sqrt((1 + sqrt 2)^2)`
`<=> |x - 2| = 1 + sqrt 2`
`=> x = sqrt 2 +3` hoặc `- sqrt 2 + 1`
`\sqrt{x^2-4x+4}=\sqrt{3+2\sqrt{2}}`
`<=>\sqrt{(x-2)^2}=\sqrt{(\sqrt{2}+1)^2}`
`<=>|x-2|=\sqrt{2}+1`
`<=>` $\left[\begin{matrix} x-2=\sqrt{2}+1\\ x-2=-\sqrt{2}-1\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x=\sqrt{2}+3\\ x=-\sqrt{2}+1\end{matrix}\right.$
... \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{2}+1\right)^2}\) \(\Leftrightarrow\left|x-2\right|=\sqrt{2}+1\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{2}+1\\x-2=-\sqrt{2}-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}+3\\x=-\sqrt{2}+1\end{matrix}\right.\)