\(\sqrt{\left(\sqrt{8}-4\right)^2}\)
\(=\left|\sqrt{8}-4\right|\)
\(=4-\sqrt{8}\)
\(\sqrt{\left(\sqrt{8}-4\right)^2}=\left|\sqrt{8}-4\right|=4-\sqrt{8}=4-2\sqrt{2}\)
`sqrt{(sqrt{8} - 4)^2}`
`= |sqrt{8} - 4|`
`= 4 - sqrt{8} `
\(\sqrt{\left(\sqrt{8}-4\right)^2}\)
\(=\left|\sqrt{8}-4\right|\)
\(=4-\sqrt{8}\)
\(\sqrt{\left(\sqrt{8}-4\right)^2}=\left|\sqrt{8}-4\right|=4-\sqrt{8}=4-2\sqrt{2}\)
`sqrt{(sqrt{8} - 4)^2}`
`= |sqrt{8} - 4|`
`= 4 - sqrt{8} `
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
\(P\left(x\right)=\sqrt[3]{\sqrt{x+8}\left(x^4+8x^3+12x\right)+6x^3+48x^2+8}\)
đặt \(A=\sqrt{x+8}\left(x^4+8x^3+12x\right)+6x^3+48x^2+8\)
\(=\sqrt{x+8}\left(x^4+8x^3\right)+6x^2\left(x+8\right)+12x\sqrt{x+8}+8\)
\(=\sqrt{\left(x+8\right)^3}x^3+3\sqrt{\left(x+8\right)^2}x^22+3\sqrt{\left(x+8\right)}x4+8\)
\(=\left(x\sqrt{x+8}+2\right)^3\)
\(\Rightarrow P\left(x\right)=x\sqrt{x+8}+2\)
\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
1. Tính ( rút gọn)
a)\(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
b)\(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
c)\(\sqrt{8+2\sqrt{15}}+\sqrt{\left(\sqrt{2-\sqrt{5}}\right)^2}\)
d)\(\sqrt{12+6\sqrt{3}}.\left(3+\sqrt{3}\right)\)
e) \(\left(2-\sqrt{5}\right).\sqrt{9+4\sqrt{5}}\)
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
Gấp lắm . Giúp mình cảm ơn ạ
Bài 1
\(2\sqrt{\left(1+\sqrt{3}\right)^{ }3}-\sqrt{\left(2\sqrt{3}-3\right)^2}\)
\(\left(1+\sqrt{3}-\sqrt{5}\right).\left(1+\sqrt{3}+\sqrt{5}\right)\)
\(\left(\sqrt[]{\dfrac{8}{3}}-\sqrt{5}\right)x\sqrt{6}\)
\(\left(5+4\sqrt{2}\right).\left(3+2\sqrt{1}+\sqrt{2}\right).\left(3-2\sqrt{1}+2\right)\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
\(\left\{{}\begin{matrix}8\sqrt{xy-2y}-8y+4=\left(x-y\right)^2\\2\sqrt{2y-y^2}\left(\sqrt{8-2x}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{x-2}\end{matrix}\right.\)
1> Rut gon
a)\(\sqrt{6-2\sqrt{2}+2\sqrt{3}-2\sqrt{6}}\)
b) \(\left(\sqrt{2}+1\right)\left(\left(\sqrt{2}\right)^2+1\right)\left(\left(\sqrt{2}\right)^4+1\right)\left(\left(\sqrt{2}\right)^8+1\right)\left(\left(\sqrt{2}\right)^{16}+1\right)\)
c)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
d) \(\sqrt{3-\frac{4\sqrt{5}}{3}}+\sqrt{3+\frac{4\sqrt{5}}{3}}\)