Ta có dạng tổng quát:
căn bậc 2 của 1 số a không âm là số x sao cho: x^2 = a
vì số đã có mũ bằng 2 nên cơ số vẫn giữ nguyên
bạn trả lời rõ được không?
bài này dựa trên định lí nào đó
Ta có dạng tổng quát:
căn bậc 2 của 1 số a không âm là số x sao cho: x^2 = a
vì số đã có mũ bằng 2 nên cơ số vẫn giữ nguyên
bạn trả lời rõ được không?
bài này dựa trên định lí nào đó
Cho a, b, c > 0 có a + b + c = 3. Chứng minh: \(\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le6\)
Chứng minh \(\sqrt{a^2-a+1}+\sqrt{b^2-b+1}\ge2\sqrt[4]{\left(a^2-a+1\right)\left(b^2-b+1\right)+\frac{1}{8}\left(a-b\right)^2}\)
Với a, b >0.
Liệu có thể chứng minh?
Chứng minh với a; b; c; d > 0
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\) \(\ge\) \(\left(a+b\right)\left(c+d\right)\)
chứng minh rằng :\(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}>2\left(a+b+c\right)\)
Với \(a\ge0,a\ne1\), chứng minh \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\)
chứng minh với a,b\(\ge0\)
thì: \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)
Các bạn trình bày chi tiết hộ mk nhé. Lm đc bài nào thì lm. Xin cảm ơn
Bài 1:
cho a,b,c > 0
Chứng minh \(\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)\) lớn hơn hoặc bằng \(abc\left(a+2b\right)\left(c+2a\right)\left(b+2c\right)\)
Bài 2
Cho a,b,c > 0
Chứng minh \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\)lớn hơn hoặc bằng 1
Cho a,b,c là các số dương thỏa mãn điều kiện \(a+b+c+2\sqrt{abc}=2\). Chứng minh rằng:
\(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
Chứng minh rằng: \(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\)
Dấu "=" xảy ra khi nào?