Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đức Toàn

(\(\sqrt[3]{x^2+3x+3}\)+\(\sqrt[3]{2x^2+3x+2}\))=6x2+12x+8

mình cần gấp!!!!!

Đặng Ngọc Quỳnh
22 tháng 9 2020 lúc 18:35

Cách 1:

Với mọi x, ta có:

\(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Do đó: \(\sqrt[3]{x^2+3x+3}>0;\sqrt[3]{2x^2+3x+2}>0\)

Áp dụng bất đẳng thức Co-si cho 3 số:

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right).1.1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right).1.1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

Vậy nghiệm của phương trình là x=-1

Cách 2:

Đặt \(a=\sqrt[3]{x^2+3x+3}>0;b=\sqrt[3]{2x^2+3x+2}>0\)

Phương trình trở thành: \(a+b=2a^3+2b^3-2\)

Lại có: \(\left(a+b\right)\left(a-b\right)^2\ge0,\forall a>0,b>0\Rightarrow2a^3+2b^3\ge\frac{1}{2}\left(a+b\right)^3\)

\(\Rightarrow a+b\ge\frac{1}{2}\left(a+b\right)^3-2\Leftrightarrow\left(a+b-2\right)\left[\left(a+b\right)^2+2\left(a+b\right)+2\right]\le0\)

\(\Leftrightarrow a+b\le2\)

Từ phương trình ban đầu ta còn có: \(a+b=6\left(x+1\right)^2+2\ge2\Rightarrow a+b=2\Rightarrow x=-1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phan Trọng Hoan
Xem chi tiết
Ling ling 2k7
Xem chi tiết
Nguyễn An
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Trịnh Hải Yến
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
shunnokeshi
Xem chi tiết