Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn An

giải phương trình:

a,\(\sqrt{2-3x}\)=-3x2+7x-1

b,6x2+2x+1=3x\(\sqrt{6x+3}\) 

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:16

a.

ĐKXĐ: \(x\le\dfrac{2}{3}\)

\(3x^2-7x+2-\left(1-\sqrt{2-3x}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)-\dfrac{3x-1}{1+\sqrt{2-3x}}=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-2-\dfrac{1}{1+\sqrt{2x-3}}\right)=0\) (1)

Do \(x\le\dfrac{2}{3}\Rightarrow x-2< 0\Rightarrow x-2-\dfrac{1}{1+\sqrt{2-3x}}< 0;\forall x\in TXĐ\)

Nên (1) tương đương:

\(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:19

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(18x^2+6x+3=9x\sqrt{6x+3}\)

Đặt \(\sqrt{6x+3}=y\ge0\) ta được:

\(18x^2+y^2=9xy\)

\(\Leftrightarrow18x^2-9xy+y^2=0\)

\(\Leftrightarrow\left(6x-y\right)\left(3x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=3x\\y=6x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=6x\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}6x+3=9x^2\\6x+3=36x^2\end{matrix}\right.\) (\(x\ge0\))

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{13}}{12}\end{matrix}\right.\)


Các câu hỏi tương tự
Ha Pham
Xem chi tiết
bí ẩn
Xem chi tiết
La Đại Cương
Xem chi tiết
Xem chi tiết
Minh Anh
Xem chi tiết
Phuonganh Nhu
Xem chi tiết
Anh Nguyễn
Xem chi tiết
Ngọc Hoàng Khương Nguyễn
Xem chi tiết
Tobot Z
Xem chi tiết