\(A=\sqrt[3]{3\sqrt{2}+7}-\sqrt[3]{3\sqrt{2}-7}\)
=>\(A^3=3\sqrt{2}+7-3\sqrt{2}+7-3\cdot A\cdot\sqrt[3]{18-49}\)
=>\(A^3=14-3\cdot A\cdot\sqrt[3]{-31}\)
=>\(A\simeq3,64\)
\(A=\sqrt[3]{3\sqrt{2}+7}-\sqrt[3]{3\sqrt{2}-7}\)
=>\(A^3=3\sqrt{2}+7-3\sqrt{2}+7-3\cdot A\cdot\sqrt[3]{18-49}\)
=>\(A^3=14-3\cdot A\cdot\sqrt[3]{-31}\)
=>\(A\simeq3,64\)
a : \(\sqrt{5+2\sqrt{6}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)
b : \(\dfrac{\sqrt{7}-2\sqrt{7}}{2-\sqrt{7}}+\dfrac{6}{\sqrt{7}+1}+\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)\)
1/ \(\frac{2}{3-\sqrt{7}}\sqrt{\frac{6\sqrt{2}-2\sqrt{14}}{3\sqrt{2}+\sqrt{14}}}\)
2/ \(\sqrt{6+2\sqrt{\sqrt{5}-\sqrt{13-\sqrt{48}}}}\)
3/ \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
4/ \(\frac{24}{\sqrt{7}+1}+\frac{4}{3+\sqrt{7}}-\frac{3}{\sqrt{7}+2}\left(4-\sqrt{7}\right)\)
5/ \(\sqrt{7-3\sqrt{5}}\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
\(\sqrt{2+\sqrt{2}.}\sqrt{3+\sqrt{7+\sqrt{2}.}}\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}.}}\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)
Tính:
1) ( \(2\sqrt{5}-\sqrt{7}\) ) \(\left(2\sqrt{5}+\sqrt{7}\right)\)
2) \(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
3) \(\sqrt{\left(\sqrt{7}-2\right)^2}+\sqrt{\left(\sqrt{7}+2\right)^2}\)
4) \(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
5) \(\left(\sqrt{5}-\sqrt{6}\right)^2\)
6) \(\left(\sqrt{3}-\sqrt{5}\right)^2\)
7) \(\left(2\sqrt{2}+\sqrt{3}\right)^2\)
a : \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
c : \(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
d : \(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\)
THỰC HIỆN PHÉP TÍNH
1,\(\sqrt{3+\sqrt{5}}.\sqrt{2}\)
2,\(\sqrt{3-\sqrt{5}.\sqrt{8}}\)
3,\((\sqrt{\dfrac{3}{4}}-\sqrt{3}+5\sqrt{\dfrac{4}{3})}.\sqrt{12}\)
4,\((\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{7}):\sqrt{7}\)
5, \(\sqrt{36-12\sqrt{5}}:\sqrt{6}\)
6,\(\sqrt{3-\sqrt{5}:}\sqrt{2}\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(\sqrt{3\sqrt{7}-1+2\sqrt{12-3\sqrt{7}}}-\sqrt{2\sqrt{7}+1}\)