Ta có: \(\sqrt{2\left(x^2-y^2\right)}\cdot\sqrt{\dfrac{3}{x+y}}\)
\(=\sqrt{2\left(x^2-y^2\right)\cdot\dfrac{3}{x+y}}\)
\(=\sqrt{\dfrac{6\left(x-y\right)\left(x+y\right)}{x+y}}\)
\(=\sqrt{6\left(x-y\right)}\)
Ta có: \(\sqrt{2\left(x^2-y^2\right)}\cdot\sqrt{\dfrac{3}{x+y}}\)
\(=\sqrt{2\left(x^2-y^2\right)\cdot\dfrac{3}{x+y}}\)
\(=\sqrt{\dfrac{6\left(x-y\right)\left(x+y\right)}{x+y}}\)
\(=\sqrt{6\left(x-y\right)}\)
\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^2}-\sqrt{y^2}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A ≥0
Rút gọn các biểu thức sau:
b) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) x \(\ne\) 1, y \(\ne\) 1, y > 0
Rút gọn các biểu thức sau:
a) A = \(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\)
b) B = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
c) C = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2+\sqrt{x}}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
d) D = \(\sqrt{\dfrac{a+x^2}{x}-2\sqrt{a}}-\sqrt{\dfrac{a+x^2}{x}+2\sqrt{a}}\) với a > 0, x > 0.
Rút gọn biểu thức P=\(\sqrt{\dfrac{1}{x^2+y^2}+\dfrac{1}{\left(x+y\right)^2}+\sqrt{\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{\left(x^2+y^2\right)^2}}}\)
Mn giúp e với
a) \(Q=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}\left(x>0,y>0\right)\)
Rút Gọn
b) \(M=\frac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right)x^2-\sqrt{6}}\)
Rút Gọn
với x>y≥0, biểu thức:\(\dfrac{1}{y-x}\sqrt{x^6\left(x-y\right)2}\)rút gọn bt ta đc...
Với x > y ≥ 0 , biểu thức: \(\dfrac{1}{y-x}\sqrt{x^6\left(x-y\right)^2}\)có kết quả rút gọn là
rút gọn biểu thức: P=\(\dfrac{4\sqrt{xy}}{x-y}\):\(\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y^2}\right)\)-2x
Rút gọn biểu thức sau A = \(\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right):\left(\sqrt{\dfrac{x}{y}}-\sqrt{\dfrac{y}{x}}\right)\) với x = 1 + a; y = 1 - a
Rút gọn biểu thức sau : \(A=\sqrt{2\left(\sqrt{x^2+y^2}-x\right)\left(\sqrt{x^2+y^2}-y\right)}+\sqrt{x^2+y^2}\)với \(x>0;y>0\)