\(\left(\sqrt{18}+\sqrt{50}-\sqrt{72}\right):\sqrt{2}\)
\(=\left(3\sqrt{2}+5\sqrt{2}-6\sqrt{2}\right):\sqrt{2}\)
\(=2\sqrt{2}:\sqrt{2}\)
\(=2\)
`= 3 sqrt 2 : sqrt 2 + 5 sqrt 2 : sqrt 2 - 6 sqrt 2 : sqrt 2`
`= 3 + 5 - 6`
`= 2`.
\(\left(\sqrt{18}+\sqrt{50}-\sqrt{72}\right):\sqrt{2}\)
\(=\left(3\sqrt{2}+5\sqrt{2}-6\sqrt{2}\right):\sqrt{2}\)
\(=2\sqrt{2}:\sqrt{2}\)
\(=2\)
`= 3 sqrt 2 : sqrt 2 + 5 sqrt 2 : sqrt 2 - 6 sqrt 2 : sqrt 2`
`= 3 + 5 - 6`
`= 2`.
tính
A=\(\left(1-\sqrt{7}\right).\dfrac{\sqrt{7}+7}{2\sqrt{7}}\)
B=\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
C=\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
D=\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
E=\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
Rút Gọn
1.\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
2.\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
3.\(\sqrt{72}+\sqrt{4\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
4.\(\left(\sqrt{325}-\sqrt{117}+2\sqrt{208}\right):\sqrt{13}\)
5.\(\left(\sqrt{12}-\sqrt{48}-\sqrt{108}-\sqrt{192}\right):2\sqrt{3}\)
6.\(\left(2\sqrt{112}-5\sqrt{7}+2\sqrt{63}-2\sqrt{28}\right)\sqrt{7}\)
7.\(\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)\)
8.\(7\sqrt{24}-\sqrt{150}-5\sqrt{54}\)
9.\(2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}\)
10.\(\sqrt{32}-\sqrt{50}+\sqrt{98}-\sqrt{72}\)
11.\(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
12.\(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
13.\(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
14.\(\sqrt{125}-2\sqrt{20}-3\sqrt{80}+4\sqrt{45}\)
15.\(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}\)
16.\(10\sqrt{28}-2\sqrt{275}-3\sqrt{343}-\frac{3}{2}\sqrt{396}\)
\(A=\sqrt{50}-\dfrac{3}{2}\sqrt{32}-\dfrac{1}{3}\sqrt[]{72}+\sqrt{8}\)
a
\(\sqrt{32}\)+\(\sqrt{50}\) - 2\(\sqrt{200}\) + 3\(\sqrt{72}\)
b)\(\dfrac{3}{\sqrt{ }2-1}\) + \(\sqrt{\left(3-\sqrt{2}\right)^{^2}}\) - 2\(\sqrt{2}\)
rút gọn các biểu thức trên
rút gọn biểu thức
E=2\(\sqrt{3}\)+3\(\sqrt{27}\)-\(\sqrt{300}\)
F=3\(\sqrt{2}\)+4\(\sqrt{18}\)
G=2\(\sqrt{3}\)-4\(\sqrt{27}\)+5\(\sqrt{48}\)
H=(3\(\sqrt{50}\)-5\(\sqrt{18}\)+3\(\sqrt{8}\))\(\sqrt{2}\)
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
a) \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)
c) \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)
đề bài là rút gọn biểu thức
giải chi tiết hộ mình ạ !!!
Rút gon: \(\sqrt{7-2\sqrt{2+\sqrt{50}+\sqrt{18-\sqrt{188}}}}\)
Rút gọn các biểu thức sau
a) 2\(\sqrt{32}\) + 3\(\sqrt{72}-7\sqrt{50}+\sqrt{2}\) b)\(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\) c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\) e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}vớia< b\)
\(\sqrt{7-2\sqrt{2+\sqrt{50}+\sqrt{18-\sqrt{128}}}}\)