Lời giải:
\(A-4=(\frac{2021}{2022}-1)+(\frac{2022}{2023}-1)+(\frac{2023}{2024}-1)+(\frac{2024}{2021}-1)\\ =\frac{3}{2021}-\frac{1}{2022}-\frac{1}{2023}-\frac{1}{2024}\\ =(\frac{1}{2021}-\frac{1}{2022})+(\frac{1}{2021}-\frac{1}{2023})+(\frac{1}{2021}-\frac{1}{2024})>0\)
$\Rightarrow A>4$