\(\Leftrightarrow1+2sinx.cosx+1-cosx=2\sqrt{3}sin^2x+\left(4-\sqrt{3}\right)sinx\)
\(\Leftrightarrow cosx\left(2sinx-1\right)-\left(2\sqrt{3}sin^2x+\left(4-\sqrt{3}\right)sinx-2\right)=0\)
\(\Leftrightarrow cosx\left(2sinx-1\right)-\left(2sinx-1\right)\left(\sqrt{3}sinx+2\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+\sqrt{3}sinx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cos\left(x-\dfrac{\pi}{3}\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow...\)