\(=\dfrac{-\left(2x-1\right)^2+2x\left(3x-2\right)-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2+4x-1+6x^2-4x-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{2x^2-3x+1}{2x\left(2x-1\right)}=\dfrac{x-1}{2x}\)
Với `x \ne 0,x \ne 1/2` có:
`A=[1-2x]/[2x]+[3x-2]/[2x-1]+[3x-2]/[2x-4x^2]`
`A=[-(1-2x)^2+2x(3x-2)-3x+2]/[2x(2x-1)]`
`A=[-1+4x-4x^2+6x^2-4x-3x+2]/[2x(2x-1)]`
`A=[2x^2-3x+1]/[2x(2x-1)]`
`A=[(2x-1)(x-1)]/[2x(2x-1)]=[x-1]/[2x]`