\(C=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1\)
\(=a-\sqrt{a}\)
\(C=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1\)
\(=a-\sqrt{a}\)
Cho biểu thức:
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) rút gọn A
b) Tìm giá trị nhỏ nhất của A.
Cho A=\(1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\times\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a) Rút gọn A
b) Tìm a để A=\(\dfrac{\sqrt{6}}{1+\sqrt{6}}\)
c) CMR: A>\(\dfrac{2}{3}\)
Cho biểu thức C =\([1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)].[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a-1}\right)}]\)
a) Tìm ĐKXĐ của C
b) Rút gọn C
c) Với giá trị nào của a thì C nhận giá trị nguyên
\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) Rút gọn biểu thức P
b) Biết a > 1. Hãy so sánh P với \(\left|P\right|\)
(2)
1) rút gọn: A= \(1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
2) cho hàm số bậc nhất \(y=\left(2-3m\right)x+m^2+1\)(d). xác định m để (d) cắt đường thẳng \(y=x-2\) tại điểm có tung độ là -3
giúp mk vs ạ mk cần gấp
M = \(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\)
a) Rút gọn M
b) Tìm những GT nguyên của A để M có GT nguyên
!!Help
rút gọn biểu thức a
A= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a/ rút gọn A
b/ tìm giá trị để A dương
Rút gọn biểu thức:
P = \(\dfrac{2a^2+4}{1-a^3}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\)
A = \(\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)
Q = \(\left(1-\dfrac{\sqrt{a}-4a}{1-4a}\right)\) : \(\left[1-\dfrac{1+2a-2\sqrt{a}\left(2\sqrt{a}+1\right)}{1-4a}\right]\) với a > 0, a ≠ \(\dfrac{1}{4}\)
Rút gọn
Giúp em với ạ ! Em cảm ơn !