a: \(A=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
a: \(A=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
1) cho biểu thức A= \(\dfrac{x^2-\sqrt{x}}{x-\sqrt{x}+1}\) - \(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) + \(\dfrac{2.\left(x-1\right)}{\sqrt{x}-1}\) ( x>0; x ≠1)
a) Rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của 4
Cho biểu thức
A =\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right).\dfrac{a-4}{\sqrt{4a}}\) với a ≥0,a≠4
a) Rút gọn biểu thức A
b) Tìm giá trị của a để A -2 < 0
c) Tìm giá trị của a nguyên để biểu thức \(\dfrac{4}{A+1}\)
Bài 1 : Cho biểu thức A=(\(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}})\):\(\dfrac{\sqrt{a}+1}{a-1}\) với a>0 , a≠1
a) Rút gọn b.thức A
b) Tìm các giá trị của a để A<0
Bài 2 : Rút gọn các b.thức :
A =\((\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}):\dfrac{x-9}{\sqrt{x}-3}\) với x ≥ 0 , x ≠ 4 , x ≠ 9
B = \(3\sqrt{8}-\sqrt{50}-\sqrt{(\sqrt{2}-1)^2}\)
C = \(\dfrac{2}{x-1}\times\sqrt{\dfrac{x^2-2x+1}{4x^2}}\) với 0 < x < 1
D = \((\dfrac{1-a\sqrt{a
}}{1-\sqrt{a}}+\sqrt{a})(\dfrac{1-\sqrt{a}}{1-a})^2\) với a ≥ 0 , a ≠ 1
( giúp hộ em với ạ , em đang cần gấp ạ )
Cho biểu thức :A= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right)\): \(\dfrac{\sqrt{a}-1}{a-1}\)
a) Rút gọn biểu thức A
b) Tìm các giá trị của a để A<0
rút gọn biểu thức a
A= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a/ rút gọn A
b/ tìm giá trị để A dương
Cho biểu thức:
\(D=\left(\dfrac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\dfrac{a+b+2ab}{1-ab}\right)\)
a) Tìm đkxđ và rút gọn \(D\)
b) Tính \(D\) với \(a=\dfrac{2}{2+\sqrt{3}}\)
c) Tìm giá trị lớn nhất của \(D\)
Cho biểu thức \(P=\left(\dfrac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\dfrac{a-b}{\sqrt{a^2-b^2}-a+b}\right).\left(\dfrac{a^2+b^2}{\sqrt{a^2-b^2}}\right)\)với a>b>0
1) Rút gọn biểu thức P
2) Biết a-b=1. Tìm giá trị nhỏ nhất của P
Cho A=\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{x+\sqrt{x}}{x-\sqrt{x}}\)
a)Rút gọn A với x>0;x≠1
b)Tìm giá trị nhỏ nhất của biểu thức P=A+\(\dfrac{2019^2\sqrt{x}}{4}\)
Cho biểu thức A=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\left(x-1\right)\)(\(x\ge0;x\ne1\))
a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A