Rút gọn các biểu thức sau:
j) \(\left(\dfrac{1}{\sqrt{7-2\sqrt{10}}}-\dfrac{\sqrt{2}}{\sqrt{10}+2}+1\right):\left(\sqrt{2}+1\right)^2\)
k) \(\sqrt{5}\left(\sqrt{6}+1\right):\dfrac{\sqrt{2\sqrt{3}+\sqrt{2}}}{\sqrt{2\sqrt{3}}-\sqrt{2}}\)
o) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
p) \(\left(\sqrt{5}+3\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
j.
\(J=\left[\frac{1}{\sqrt{(\sqrt{5}-\sqrt{2})^2}}-\frac{\sqrt{2}}{\sqrt{2}(\sqrt{5}+\sqrt{2})}+1\right].\frac{1}{(\sqrt{2}+1)^2}\)
\(=\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{(\sqrt{2}+1)^2}\)
\(=[\frac{\sqrt{5}+\sqrt{2}-(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}+1].\frac{1}{(\sqrt{2}+1)^2}=(\frac{2\sqrt{2}}{3}+1).\frac{1}{(\sqrt{2}+1)^2}=\frac{3+2\sqrt{2}}{3}.\frac{1}{3+2\sqrt{2}}=\frac{1}{3}\)
k. Đề sai sai, bạn xem lại
o.
\(O=(4+\sqrt{15})(\sqrt{5}-\sqrt{3}).\sqrt{2}.\sqrt{4-\sqrt{15}}\)
\(=(4+\sqrt{15}(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)
\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
p: Ta có: \(\left(3+\sqrt{5}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\cdot\left(6-2\sqrt{5}\right)\)
\(=18-6\sqrt{5}+6\sqrt{5}-20\)
=-2