Lời giải:
ĐKXĐ: $x>0$
\(A=\frac{\sqrt{x}+1+x}{\sqrt{x}(\sqrt{x}+1)}:\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x+\sqrt{x}+1}{\sqrt{x}(\sqrt{x}+1)}.\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Lời giải:
ĐKXĐ: $x>0$
\(A=\frac{\sqrt{x}+1+x}{\sqrt{x}(\sqrt{x}+1)}:\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x+\sqrt{x}+1}{\sqrt{x}(\sqrt{x}+1)}.\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
RÚT GỌN CÁC BIỂU THỨC SAU:
21) \(A = \left(\dfrac{x\sqrt{x} + 1}{x - 1} - \dfrac{x - 1}{\sqrt{x} - 1}\right) : \left(\sqrt{x} + \dfrac{\sqrt{x}}{\sqrt{x} - 1}\right) \)
22) \(A = \left(\dfrac{x}{\sqrt{x} - 1} - \sqrt{x}\right) : \left(\dfrac{\sqrt{x} + 1}{\sqrt{x}} - \dfrac{1}{1 - \sqrt{x}} + \dfrac{2 - x}{x - \sqrt{x}}\right)\)
23) \(A = \left(\dfrac{\sqrt{x} - 4}{x - 2\sqrt{x}} - \dfrac{3}{2 - \sqrt{x}}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x}} - \dfrac{\sqrt{x}}{\sqrt{x} - 2}\right)\)
24) \(A = \left(\dfrac{2x + 1}{x\sqrt{x} - 1} + \dfrac{1}{1 - \sqrt{x}}\right) : \left(1 - \dfrac{x - 2}{x + \sqrt{x} + 1}\right)\)
25) \(A = 1 : \left(\dfrac{x + 2\sqrt{x} - 2}{x\sqrt{x} + 1} - \dfrac{\sqrt{x} -1}{x - \sqrt{x} + 1} + \dfrac{1}{\sqrt{x} + 1}\right)\)
26) \(A = \left(\dfrac{\sqrt{x}}{\sqrt{x} + 2} - \dfrac{3}{2 - \sqrt{x}} + \dfrac{3\sqrt{x} - 2}{x - 2}\right) : \left(\dfrac{\sqrt{x} + 3}{\sqrt{x} - 2} + \dfrac{2\sqrt{x}}{2\sqrt{x} - x}\right)\)
27) \(P = \left(\dfrac{4\sqrt{x}}{2 + \sqrt{x}} + \dfrac{8}{4 - x}\right) : \left(\dfrac{\sqrt{x} - 1}{x - 2\sqrt{x}} - \dfrac{2}{\sqrt{x}}\right)\)
RÚT GỌN BIỂU THỨC:
12) \(A = \left(\dfrac{x}{\sqrt{x} - 1} - \sqrt{x}\right) : \left(\dfrac{\sqrt{x} + 1}{\sqrt{x}} - \dfrac{1}{1 - \sqrt{x}} + \dfrac{2 - x}{x - \sqrt{x}}\right)\)
RÚT GỌN BIỂU THỨC:
19) \(A = \left(\dfrac{1}{\sqrt{x}} - \dfrac{1}{\sqrt{x} - 1}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x} - 1} - \dfrac{\sqrt{x} + 1}{\sqrt{x} - 2}\right)\)
RÚT GỌN BIỂU THỨC:
20) \(E = \left(\dfrac{x\sqrt{x} - 1}{x - \sqrt{x}} - \dfrac{x\sqrt{x} +1}{x + \sqrt{x}}\right) + \left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x} + 1}{\sqrt{x} - 1} + \dfrac{\sqrt{x} - 1}{\sqrt{x} + 1}\right)\)
RÚT GỌN BIỂU THỨC:
9) \(A = \left(\dfrac{1}{1 - \sqrt{x}}+\dfrac{1}{1 + \sqrt{x}}\right) : \left(\dfrac{1}{1 - \sqrt{x}}-\dfrac{1}{1 + \sqrt{x}}\right) + \dfrac{1}{1 - \sqrt{x}} \)
\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\times\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
rút gọn biểu thức
RÚT GỌN BIỂU THỨC:
11) \(A = \left(\dfrac{2\sqrt{x} + x}{x\sqrt{x} - 1} - \dfrac{1}{\sqrt{x} - 1}\right) : \left(\dfrac{\sqrt{x} + 2}{x + \sqrt{x} + 1}\right)\)
Rút gọn biểu thức dạng chữ:
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\left(x+\sqrt{x}\right)\) với x ≥0, x ≠1
A= \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}}{4-x}\right):\dfrac{\sqrt{x}+1}{x-4}\) với x ≥0, x ≠ 4
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\right):\dfrac{1}{x+6\sqrt{x}+9}\) với x ≥ 0, x ≠ 9
Hộ vs ạ
a. rút gọn biểu thức B
b.tìm x để biểu thức M=A.b nhận giá trị nguyên
B=\(B=\dfrac{\sqrt{X}+1}{\sqrt{X}-2}+\dfrac{\sqrt{X}+2}{1-\sqrt{X}}+\dfrac{\sqrt{X}-4}{\left(\sqrt{X}-1\right)\left(\sqrt{X}-2\right)}\)