ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(p=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a. tìm điều kiện của x để P xác định
b. rút gọn p
c. tìm giá trị của x để p<0
Cho biểu thức P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\)
a) Tìm điều kiện xác định của P
B) Rút gọn P
Tìm điều kiện xác định và rút gọn biểu thức:
D=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
E=\(\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{2-\sqrt{x}}{3-\sqrt{x}}-\dfrac{\sqrt{x}-8}{x-\sqrt{x}-6}\right):\left(1-\dfrac{\sqrt{x}+6}{2\sqrt{x}+4}\right)\)
Cho P = \(\left(\dfrac{\sqrt{x}}{\sqrt{1}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x+1}}+\dfrac{2}{x-1}\right)\)
a) Tình điều kiện xác định và rút gọn biểu thức P ?
b) Tính giá trị của P khi x=\(2\sqrt{2}+3\)?
Câu 4: Cho biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
a. Tìm điều kiện xác định của biểu thức A
b. Rút gọn A
c. Tìm x để giá trị biểu thức A > \(\dfrac{2}{5}\)
P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a)tìm điều kiện để P có nghĩa
b)rút gọn P
c)tính giá trị của P với x=\(3+2\sqrt{2}\)
B=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\)
a)Tìm điều kiện xác định
b)Rút gọn
c) tìm B khi x=16
d)tìm điều kiện để B>0
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\). Tìm điều kiện của x để biểu thức A có nghĩa, giải chi tiết giúp mình với.
Cho biểu thức A= (\(\dfrac{1}{x-\sqrt{x}}\) + \(\dfrac{1}{\sqrt{x}-1}\)) . \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
a, Tìm điều kiện xác định để A có nghĩa
b, Rút gọn A
c, Tính A khi x=4
mình đang cần để tham khảo ạ :3