`a, x^2 - 3x + 2`
`= x^2 - x - 2x + 2`
`= (x-1)(x-2)`
`b, x^2 + x - 5x -5`
`=(x+1)(x-5)`
`c, x^2 - 3x - 4x + 12`
`= (x-3)(x-4)`
a, \(x^2-3x+2=\left(x^2-x\right)-\left(2x-2\right)=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
b,
\(x^2-4x-5=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x+1\right)\left(x-5\right)\)
c,
\(x^2-7x+12=\left(x^2-4x\right)-\left(3x-12\right)=x\left(x-4\right)-3\left(x-4\right)=\left(x-4\right)\left(x-3\right)\)
\(a.x^2-3x+2\)
\(=x^2-2x-x+2\)
\(=x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
\(b.x^2-4x-5\)
\(=x^2+x-5x-5\)
\(=x\left(x-5\right)+\left(x-5\right)\)
\(=\left(x-5\right)\left(x+1\right)\)
\(c.x^2-7x+12\)
\(=x^2-4x-3x+12\)
\(=x\left(x-4\right)-3\left(x-4\right)\)
\(=\left(x-3\right)\left(x-4\right)\)
a) x\(^2\) - 3x + 2
= x\(^2\) - x - 2x +2
= \(\left(x^2-x\right)-\left(2x-2\right)\)
= x(x-1)-2(x-1)
=(x-1)(x-2)
b) x\(^2\)-4x-5
= x\(^2\)+x-5x-5
=x(x+1)-5(x+1)
=(x+1)(x-5)
c) x\(^2\)-7x+12
= \(x^2-3x-4x-12\)
= \(\left(x^2-3x\right)-\left(4x-12\right)\)
= \(x\left(x-3\right)-4\left(x-3\right)\)
= \(\left(x-3\right)\left(x-4\right)\)
a,x2−3x+2a,x2-3x+2
=x2−x−2x+2=x2-x-2x+2
=(x−1)(x−2)=(x-1)(x-2)
b,x2+x−5x−5b,x2+x-5x-5
=(x+1)(x−5)=(x+1)(x-5)
c,x2−3x−4x+12c,x2-3x-4x+12
=(x−3)(x−4)