Sửa đề: \(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để P là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{\sqrt{x}+1}{\sqrt{x}-3}>=0\\\sqrt{x}-3+4⋮\sqrt{x}-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>9\\\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\end{matrix}\right.\)
=>\(x\in\left\{16;25;49\right\}\)