Do 5 điểm A, B, C, D, E cùng thuộc 1 đường tròn nên A, B, C, D cùng thuộc 1 đường tròn
Do đó tứ giác ABCD là tứ giác nội tiếp
Do 5 điểm A, B, C, D, E cùng thuộc 1 đường tròn nên A, B, C, D cùng thuộc 1 đường tròn
Do đó tứ giác ABCD là tứ giác nội tiếp
Cho ngũ giác lồi ABCDE nội tiếp đường tròn (O) có CD//BE. Hai đường chéo CE và BD cắt nhau tại P. Điểm M thuộc đoạn thẳng BE sao cho góc MAB = góc PAE. Điểm K thuộc đường thẳng AC sao cho MK//AD. Điểm L thuộc đường thẳng AD sao cho ML//AC. Đường tròn ngoại tiếp tam giác BKC lần lượt cắt BD, CE tại Q, S.
a) CMR: 3 điểm K,M,Q thẳng hàng ?
b) Đường tròn ngoại tiếp tam giác LDE cắt BD,CE tại T,R. CMR: 5 điểm M,N,Q,R,T cùng thuộc 1 đường tròn ?
c) CMR: Đường tròn (PQR) tiếp xúc với đường tròn (O) ?
Cho tam giác ABC nội tiếp đường tròn tâm O . Các đường cau AD,BE,CF cắt nhau ở H. I,K lần lượt là trung điểm BC,AH
a, Chứng minh tứ giác BFEC và tứ giác BFHD nội tiếp
b, Chứng minh DH.DA=DB.DC
c, Chứng minh 5 điểm E,K,F,D,I cùng thuộc 1 đường tròn
d, EF cắt BC ở M. Chứng minh \(\dfrac{MD}{BD}=\dfrac{MC}{IC}\)
cho tam giác abc vuông tại a từ một điểm d trên cạnh bc vẽ DH,DI,DK lần lượt vuông góc với AB,AC,HI. trên tia DK lấy điểm E sao cho K là trung điểm của DE a,cmr các tứ giác AHDI, HDIE là các tứ giác nội tiếp . nếu cách tìm tâm của đường tròn ngoại tiếp này b, cmr 5 điểm A,H,I,D,E, CÙNG THUỘC 1 ĐƯỜNG TRÒN
Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AB. Hai đường chéo AC và BD cắt nhau tại I. Kẻ IE vuông góc với AB. Chứng minh :
a. Tứ giác ADIE nội tiếp đường tròn ;
b. Tia DB là phân giác của góc CDE ;
c. Nếu AB không song song CD, chứng minh bốn điểm O, E, D, C cùng thuộc một đường tròn.
Cho ngũ giác lồi ABCDE nội tiếp đường tròn (O) có CD//BE. Hai đường chéo CE và BD cắt nhau tại P. Điểm M thuộc đoạn thẳng BE sao cho góc MAB = góc PAE. Điểm K thuộc đường thẳng AC sao cho MK//AD. Điểm L thuộc đường thẳng AD sao cho ML//AC. Đường tròn ngoại tiếp tam giác BKC lần lượt cắt BD, CE tại Q, S.
a) CMR: 3 điểm K,M,Q thẳng hàng.
b) Đường tròn ngoại tiếp tam giác LDE cắt BD,CE tại T,R. CMR: 5 điểm M,S,Q,R,T cùng thuộc 1 đường tròn ?
c) CMR: Đường tròn (PQR) tiếp xúc với đường tròn (O).
Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ BM là tiếp tuyến của đường tròn O ( M là tiếp điểm, M khác A), BM cắt CD tại K a) Cm 4 điểm A,B,M,O cùng thuộc 1 đg tròn ( CM theo 2 tam giác nội tiếp)
Cho đường tròn O và một 1 điểm M nằm ngoài đường tròn. Qua M vẽ 2 tiếp tuyến MA, MB (A,B là các tiếp điểm). Vẽ các tuyến MCD với đường tròn (MC<MD). Gọi I là trung điểm dây CD
a/ Chứng minh 5 điểm M, A, I, O, C cùng thuộc một đường tròn.
b/ Dây AB cắt OM tại H. Chứng minh tứ giác OHCD nội tiếp.
c/ Gọi K là giao điểm của AB với CD. Chứng minh tứ giác OIKH nội tiếp được suy ra MK.MI = MC.MD
cho tam giác ABC nội tiếp đường tron(O;R).qua A kẻ tiếp tuyến xy.từ B vẽ BM song song xy (M thuộc AC)
1. CM rằng AB^2 bằng AM.AC
2.vẽ tiếp tuyến B cắt xy tại K.CM tứ giác KAOB nội tiếp đường tròn.xác định tâm T của đường tròn ngoại tiếp tứ giác KAOB
3.đoạn KC cắt đường tròn (O )tại E .gọi I là trung điểm của BC.CM 5 điểm KAOIB cùng thuộc một đường tròn
Cho tứ giác ABCD có hai đỉnh B và C ở trên nửa đường tròn đường kính AD,tâm O.Hai đường chéo AC và BD cắt nhau tại E.Gohi H là hình chiếu vuông góc của E xuống AD và I là trung điểm của DE.cmr
a,Các tứ giác ABEH,DCEH nội tiếp được đường tròn
b,E là tâm đường tròn nội tiếp tam giác BCH
Năm điêm B,C,I,O,H cùng thuộc 1 đường tròn
Ai giúp t câu 3 vs
Cho tứ giác ABCD. Gọi O1, O2, O3, O4 là tâm đường tròn nội tiếp tam giác ABD, ABC, BCD, CDA. CMR: Nếu O1O2O3O4 là hình chữ nhật thì tứ giác ABCD là tứ giác nội tiếp