Biên độ: \(A^2=x^2+\dfrac{v^2}{\omega^2}=(2\sqrt 3)^2+\dfrac{(20\sqrt 2)^2}{(10\sqrt 2)^2}\)
\(\Rightarrow A = 4cm\)
\(\cos\varphi = \dfrac{x}{A}=\dfrac{2\sqrt 3}{4}\)
\(v>0\Rightarrow \varphi < 0\)
Suy ra: \(\varphi=-\dfrac{\pi}{6}(rad)\)
Vậy: \(x=4\cos(10\sqrt 2 t-\dfrac{\pi}{6})(cm)\)
\(A^2=x^2+\frac{v^2}{\omega^2}\Rightarrow A=4cm.\)
\
Điểm M thỏa mãn có vận tốc dương và li độ 2 căn 3. Tại đó pha ban đầu là -30 độ.
=> \(x=4\cos\left(10\sqrt{2}t-\frac{\pi}{6}\right).\)