Bài 2:
\(a,\Rightarrow x=\left(3,25\right):\left(0,15\right)\cdot\left(-1,2\right)=-26\\ b,\Rightarrow\left|3-2x\right|=4\Rightarrow\left[{}\begin{matrix}3-2x=4\\2x-3=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
\(c,\) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{4}=\dfrac{x+3y-2z}{3+15-8}=\dfrac{20}{10}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\\z=8\end{matrix}\right.\)
\(d,\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2};\dfrac{y}{z}=\dfrac{1}{3}\Rightarrow\dfrac{y}{1}=\dfrac{z}{3}\Rightarrow\dfrac{y}{2}=\dfrac{z}{6}\\ \Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{6}\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{6}=k\Rightarrow x=5k;y=2k;z=6k\)
\(x^2-y^2+2z^2=372\\ \Rightarrow25k^2-4k^2+72k^2=372\\ \Rightarrow93k^2=372\Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10;y=4;z=12\\x=-10;y=-4;z=-12\end{matrix}\right.\)
Bài 3:
Gọi số cây tổ 1,2,3 trồng đc lần lượt là a,b,c (cây;a,b,c>0)
Ta có \(a:b=6:11\Rightarrow\dfrac{a}{6}=\dfrac{b}{11};a:c=7:10\Rightarrow\dfrac{a}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{42}=\dfrac{b}{77}=\dfrac{c}{60}\) và \(a+b+c=179\left(cây\right)\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{42}=\dfrac{b}{77}=\dfrac{c}{60}=\dfrac{a+b+c}{42+77+60}=\dfrac{179}{179}=1\\ \Rightarrow\left\{{}\begin{matrix}a=42\\b=77\\c=60\end{matrix}\right.\)
Vậy ...