`a)`\(B=3\left(4-x^2\right)+\left(2x+1\right)^2-2\left(x^2+3\right)\)
\(B=12-3x^2+4x^2+4x+1-2x^2-6\)
\(B=-x^2+4x+7\)
`b)`\(B=-x^2+4x+7\)
\(B=-\left(x^2-4x+4\right)+11\)
\(B=-\left(x-2\right)^2+11\le11\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(Max_B=11\) khi `x=2`
a: \(B=12-3x^2+4x^2+4x+1-2x^2-6\)
\(=-x^2+4x+7\)
b: \(B=-\left(x^2-4x-7\right)\)
\(=-\left(x^2-4x+4-11\right)\)
\(=-\left(x-2\right)^2+11< =11\)
Dấu '=' xảy ra khi x=2
\(a,B=12-3x^2+4x^2+4x+1-2x^2-6=-x^2+4x+7\)
b, \(-\left(x^2-4x-7\right)=-\left(x^2-4x+4\right)+11=-\left(x-2\right)^2+11\)
\(\left(x-2\right)^2\ge0\\ -\left(x-2\right)^2\le0\\ -\left(x-2\right)^2+11\le11\)
Dấu " =" xảy ra khi
\(x-2=0\\ x=2\)
Vậy GTLN B là : 11 khi x =2






