ĐKXĐ: \(x\ge-2;y\ge-11\)
\(x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\)
\(\Leftrightarrow x^2+\left(y+21\right)x-2y^2-33y-100=0\)
\(\Delta=\left(y+21\right)^2+4\left(2y^2+33y+100\right)=\left(3y+29\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-y-21+3y+29}{2}=y+4\\x=\dfrac{-y-21-3y-29}{2}=-2y-25\end{matrix}\right.\)
TH1: \(x=-2y-25\Rightarrow x+2y=-25\)
Mà \(x+2y\ge-2+2.\left(-11\right)=-23>-25\)
\(\Rightarrow\) Pt vô nghiệm
TH2: \(x=y+4\) thay vào pt dưới:
\(\sqrt{y+6}+2\sqrt{y+11}=\sqrt{\left(3y+10\right)^3}\)
\(\Leftrightarrow\sqrt{y+6}-2+2\sqrt{y+11}-6=\sqrt{\left(3y+10\right)^3}-8\)
\(\Leftrightarrow\dfrac{y+2}{\sqrt{y+6}+2}+\dfrac{2\left(y+2\right)}{\sqrt{y+11}+3}=\dfrac{3\left(y+2\right)\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\Rightarrow x=2\\\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}=\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\left(1\right)\end{matrix}\right.\)
Xét (1), ta có:
\(\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}< \dfrac{1}{2}+\dfrac{2}{3}< 2\)
\(\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}=\dfrac{3\left(3y+14\right)}{\sqrt{3y+10}+2}+6>2\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(2;-2\right)\)