Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x+\sqrt{\left(x+1\right)y}=2y-1\\\sqrt{2x+3}+\sqrt{y}=x^2-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)=3\\\sqrt{4x^2+2y+2}-\sqrt{3x+y}=2x+1\end{matrix}\right.\)
giải hệ pt
1, Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3-y^3-8x=3y\\x^2-3y^2=6\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y\right)=x+y-2xy\\x^2+11x+6=2\sqrt{9y-5}+\sqrt{x+y}\end{matrix}\right.\)
1)Giải hệ phương trình với \(x,y,z\in R\)
\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)
2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố
a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)
b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)
3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :
\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)
4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\), \(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:
a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn
b)\(r=r_1+r_2\)
Giải hệ phương trình\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x+y}=2+\sqrt{x-y}\\\sqrt{x^2+y^2+1}-\sqrt{x^2-y^2}=-6x-3y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2y^3+y+2x\sqrt{1-x}=3\sqrt{1-x}\\y+\sqrt{2y^2+1}=4\sqrt{x+4}\end{matrix}\right.\)