Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
minh ngọc

\(\left\{{}\begin{matrix}mx-y=2m \\4x-my=m+6\end{matrix}\right.\) với lần lượt giá trị nào của m thì hệ vô nghiệm và hệ vô số nghiệm ( trình bày giúp mình với ạ mình cảm ơn nhiều )

Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 20:19

Để hệ vô nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}< >\dfrac{2m}{m+6}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}< >\dfrac{2m}{m+6}\\\dfrac{m}{4}< >\dfrac{2m}{m+6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\2m^2< >m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\notin\left\{2;-\dfrac{3}{2}\right\}\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{2m}{m+6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\2m^2=m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-4m+3m-6=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)=0\end{matrix}\right.\Leftrightarrow m=2\)


Các câu hỏi tương tự
Nott mee
Xem chi tiết
Xem chi tiết
anh phuong
Xem chi tiết
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Lizy
Xem chi tiết
Hồ Minh Khang
Xem chi tiết
Lizy
Xem chi tiết
An Nhi
Xem chi tiết