Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
10 tháng 1 2024 lúc 7:05

\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y^2-6y+9\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y-3\right)^2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+1+y-3\right)\left(x+1-y+3\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+y-2\right)\left(x-y+4\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

TH1: x+y-2=0

=>x=-y+2

\(2x^2+y^2-6y-1=0\)

=>\(2\left(-y+2\right)^2+y^2-6y-1=0\)

=>\(2\left(y^2-4y+4\right)+y^2-6y-1=0\)

=>\(3y^2-14y+7=0\)

\(\Delta=\left(-14\right)^2-2\cdot3\cdot7=196-42=154>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}y=\dfrac{14-\sqrt{154}}{6}\\y=\dfrac{14+\sqrt{154}}{6}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-y+2=\dfrac{-2+\sqrt{154}}{6}\\x=\dfrac{-2-\sqrt{154}}{6}\end{matrix}\right.\)

TH2: x-y+4=0

=>x=y-4

\(2x^2+y^2-6y-1=0\)

=>\(2\left(y-4\right)^2+y^2-6y-1=0\)

=>\(2\left(y^2-8y+16\right)+y^2-6y-1=0\)

=>\(3y^2-22y+31=0\)

\(\Delta=\left(-22\right)^2-4\cdot3\cdot31=112>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}y_1=\dfrac{22-\sqrt{112}}{2\cdot3}=\dfrac{11-\sqrt{28}}{3}\\y_2=\dfrac{22+\sqrt{112}}{2\cdot3}=\dfrac{11+\sqrt{28}}{3}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=y-4=\dfrac{11-\sqrt{28}}{3}-4=\dfrac{-1-\sqrt{28}}{3}\\x=y-4=\dfrac{11+\sqrt{28}}{3}-4=\dfrac{-1+\sqrt{28}}{3}\end{matrix}\right.\)

Phong
10 tháng 1 2024 lúc 7:11

\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y^2-6y+9\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y-3\right)^2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y-2\right)\left(x-y+4\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-y+4=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2-y\\2\cdot\left(2-y\right)^2+y^2-6y-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=y-4\\2\cdot\left(y-4\right)^2+y^2-6y-1=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2-y\\3y^2-14y+7=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=y-4\\3y^2-22y+31=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-\dfrac{1+2\sqrt{7}}{3}\\y=\dfrac{7+2\sqrt{7}}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{-1+2\sqrt{7}}{3}\\y=\dfrac{7-2\sqrt{7}}{3}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{-1+2\sqrt{7}}{3}\\y=\dfrac{11+2\sqrt{7}}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{1+2\sqrt{7}}{3}\\y=\dfrac{11-2\sqrt{7}}{3}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

Vậy các cặp (x;y) thỏa mãn là: \(\left(-\dfrac{1+2\sqrt{7}}{3};\dfrac{7+2\sqrt{7}}{3}\right);\left(\dfrac{-1+2\sqrt{7}}{3};\dfrac{7-2\sqrt{7}}{3}\right);\left(\dfrac{-1+2\sqrt{7}}{3};\dfrac{11+2\sqrt{7}}{3}\right);\left(-\dfrac{1+2\sqrt{7}}{3};\dfrac{11-2\sqrt{7}}{3}\right)\)


Các câu hỏi tương tự
Anime
Xem chi tiết
huyền trân
Xem chi tiết
DUTREND123456789
Xem chi tiết
Nguyễn Văn Tài Tâm
Xem chi tiết
DUTREND123456789
Xem chi tiết
Anime
Xem chi tiết
Anime
Xem chi tiết
qhuy81 nguyen
Xem chi tiết
Lizy
Xem chi tiết