\(\left\{{}\begin{matrix}\left(x+10\right)\left(y-\dfrac{1}{2}\right)=xy\\\left(x-10\right)\left(y+\dfrac{1}{3}\right)=xy\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy-\dfrac{1}{2}x+10y-5=xy\\xy+\dfrac{1}{3}x-10y-\dfrac{10}{3}=xy\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{2}x+10y=5\\\dfrac{1}{3}x-10y=\dfrac{10}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{6}x=5+\dfrac{10}{3}=\dfrac{25}{3}\\-\dfrac{1}{2}x+10y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{25}{3}\cdot6=-50\\10y=5+\dfrac{1}{2}x=5+\dfrac{1}{2}\cdot\left(-50\right)=-20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-50\\y=-2\end{matrix}\right.\)