\(\left\{{}\begin{matrix}\dfrac{5}{x+y-3}-\dfrac{2}{x-y+1}=8\\\dfrac{3}{x+y-3}+\dfrac{1}{x-y+1}=1,5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{x+y-3}-\dfrac{2}{x-y+1}=8\\\dfrac{6}{x+y-3}+\dfrac{2}{x-y+1}=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{11}{x+y-3}=11\\\dfrac{5}{x+y-3}-\dfrac{2}{x-y+1}=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-3=1\\\dfrac{2}{x-y+1}=5-8=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=4\\x-y+1=\dfrac{-2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=4\\x-y=-\dfrac{5}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=4-\dfrac{5}{3}=\dfrac{7}{3}\\x-y=-\dfrac{5}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{7}{6}\\y=x+\dfrac{5}{3}=\dfrac{7}{6}+\dfrac{5}{3}=\dfrac{7+10}{6}=\dfrac{17}{6}\end{matrix}\right.\)