\(\left\{{}\begin{matrix}3\left(x-y-1\right)\sqrt{x^2-y^2+y}=y\left(y-x\right)-3\\16y\sqrt{10-x^2}=x-y+48\end{matrix}\right.\)
Ghpt:
a) \(\left\{{}\begin{matrix}\left(4x^2+1\right).x+\left(y-3\right)\sqrt{5-2y}=0\\4x^2+y^2+2\sqrt{3-4x}=7\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+y^2=5\\\sqrt{y-1}\left(x+y-1\right)=\left(y-2\right)\sqrt{x+y}\end{matrix}\right.\)
giải hệ pt
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\left(x-1\right)+\left(y+2\right)=2\\4\left(x-1\right)+3\left(y+2\right)=7\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x^2-y^2=3\left(x-y\right)\\xy=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=6\\x^2y+y^2x=20\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x+2}\left(x+3\right)=\sqrt{y}\left[\sqrt{y\left(x+2\right)}+1\right]\\x^2+\left(y+1\right)\left(2x-y+5\right)=x+16\end{matrix}\right.\)
Giải hpt sau:
a)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3+y^3=xy\sqrt{2\left(x^2+y^2\right)}\\4\sqrt{x\sqrt{x^2-1}}=9\left(y-1\right)\sqrt{2\left(x-1\right)}\end{matrix}\right.\)
1,GTLN của \(P=\sqrt{x-2}+2\sqrt{x+1}-x+2013\)
2, nghiệm của hpt \(\left\{{}\begin{matrix}2\sqrt{x}+3y^3=28\\2y^3-5\sqrt{x}=6\end{matrix}\right.\) là \(\left(x,y\right)=\left(...;...\right)\)
3, cho hpt \(\left\{{}\begin{matrix}x-y=2\\mx+y=3\end{matrix}\right.\). tìm m để hpt có nghiệm (x,y) sao cho tích xy đạt GTNN. kết quả m =...
4,cho 2 số a, tm\(a^2+b^2=4a+bc+540\)
GTLN của \(P=23a+4b+2013\)
5, cho đa thức P(x) tm \(P\left(x-1\right)+2P\left(2\right)=x^2\). Giá trị của \(P\left(\sqrt{2013}-1\right)\) bằng ...
Bài 1: Giải các hệ PT
a) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y-2}=4\\\dfrac{4}{x}-\dfrac{1}{y-2}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+1\right)=\dfrac{1}{2}xy+5\\\dfrac{1}{3}\left(x-3\right)\left(y-5\right)=\dfrac{1}{3}xy-\dfrac{4}{3}\end{matrix}\right.\)