Vì \(\dfrac{2}{5}\ne\dfrac{1}{-3}\)
nên hệ có nghiệm duy nhất
\(\left\{{}\begin{matrix}2x+y=5\\5x-3y=-11m+29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6x+3y=15\\5x-3y=-11m+29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}11x=15-11m+29=44-11m\\2x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-m+4\\y=5-2\left(-m+4\right)=5+2m-8=2m-3\end{matrix}\right.\)
Để x,y là độ dài hai cạnh góc vuông có cạnh huyền bằng \(\sqrt{10}\) thì \(x^2+y^2=10\)
=>\(\left(-m+4\right)^2+\left(2m-3\right)^2=10\)
=>\(m^2-8m+16+4m^2-12m+9=10\)
=>\(5m^2-20m+25-10=0\)
=>\(m^2-4m+3=0\)
=>(m-1)(m-3)=0
=>\(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)