Áp dụng hằng đẳng thức số 3:
\(\left(3-\sqrt{2x}\right)\left(3+\sqrt{2x}\right)=3^2-\left(\sqrt{2x}\right)^2=9-2x\)
Áp dụng hằng đẳng thức số 3:
\(\left(3-\sqrt{2x}\right)\left(3+\sqrt{2x}\right)=3^2-\left(\sqrt{2x}\right)^2=9-2x\)
\(\sqrt{\left(x-2\right)\left(x+3\right)}=5\)
\(\sqrt{\left(2x+3\right)^2}=x-5\)
\(\sqrt{x^2-6x+9}=x+7\)
\(\sqrt{2x-3}=x-1\)
Cho x là số thực. Tìm GTNN:
\(P=\frac{\sqrt{3\left(2x^2+2x+1\right)}}{3}+\frac{1}{\sqrt{2x^2+\left(3-\sqrt{3}\right)x+3}}+\frac{1}{\sqrt{2x^2+\left(3+\sqrt{3}\right)x+3}}\)
a. \(\sqrt{\left(2x+3\right)^2}=x+1\)
b. \(\sqrt{\left(2x-1\right)^2}=x+1\)
c. \(\sqrt{x+3}=5\)
d. \(\sqrt{x+2}=\sqrt{7}\)
e. \(5\sqrt{x}=20\)
f. \(\sqrt{x+4}=7\)
g. \(\sqrt{\left(2x+1\right)^2}=3\)
Rút gọn
a.\(\left(2\sqrt{x}+\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)\)
b. \(\left(\sqrt{3x}+\sqrt{2x}\right)\left(3\sqrt{x}-\sqrt{6x}\right)\)
c.\(\left(\frac{4}{3}\sqrt{3}+\sqrt{2}\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{3}}\right)-2\)
d.\(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)(x,y lớn hơn hoặc bằng 0)
e.\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}\sqrt{y}+\sqrt{y}\right)\) (x,y lớn hơn hoặc bằng 0)
tìm x thoả mãn
\(\left(x+2\right)\left(\sqrt{2x+3}+\sqrt{x+1}\right)+\sqrt{2x^2+5x+3}=1\left(với:x\ge-1\right)\)
Tìm x
a)\(\sqrt{2x-1}=3\)
b)\(\sqrt{1-3x}=\dfrac{1}{2}\)
c)\(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)
d)\(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)
e)\(\sqrt{\left(1-2x\right)^2=|x-1|}\)
\(\frac{\left(2x\sqrt{2}+2\sqrt{2x}\right)\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right).\left(-2\sqrt{x}-2\right)}\)
=\(\frac{2\sqrt{2x}\left(\sqrt{x}+1\right)}{-2\left(\sqrt{x}+1\right)}\)
=\(-\sqrt{2x}\)
Giải phương trình:
1: \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^2+2\)
2: \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{16x-4x^2-15}\)
Xét số thực x. Timg giá trị nhỏ nhất của biểu thức
P=\(\frac{\sqrt{3\left(2x^2+2x+1\right)}}{3}+\frac{1}{\sqrt{2x^2+\left(3-\sqrt{3}\right)x+3}}+\frac{1}{\sqrt{2x^2+\left(3+\sqrt{3}\right)x}+3}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\left(2x+3\right)\sqrt{4x-1}+\left(2y+3\right)\sqrt{4y-1}=\sqrt{\left(2x+3\right)\left(2y+3\right)}\\x+y=4xy\end{cases}}\)